Calculate the 99 percent confidence interval for the true me
Calculate the 99 percent confidence interval for the true mean metal thickness. (Round your answers to 4 decimal places.)
| The Ball Corporation\'s beverage can manufacturing plant in Fort  Atkinson, Wisconsin, uses a metal supplier that provides metal with  a known thickness standard deviation  = 0.000952 mm. If a  random sample of 59 sheets of metal resulted in an  | 
Solution
Note that              
 Margin of Error E = z(alpha/2) * s / sqrt(n)              
 Lower Bound = X - z(alpha/2) * s / sqrt(n)              
 Upper Bound = X + z(alpha/2) * s / sqrt(n)              
               
 where              
 alpha/2 = (1 - confidence level)/2 =    0.005          
 X = sample mean =    0.3354          
 z(alpha/2) = critical z for the confidence interval =    2.575829304          
 s = sample standard deviation =    0.000952          
 n = sample size =    59          
               
 Thus,              
 Margin of Error E =    0.000319248          
 Lower bound =    0.335080752          
 Upper bound =    0.335719248          
               
 Thus, the confidence interval is              
               
 (   0.335080752   ,   0.335719248   ) [ANSWER]

